CONTENTS

Page
Influenza prevalence in the United States 3251
Current world prevalence of communicable diseases 3253
Current State mortality statistics 3258
Court decision relating to public health 3264
Public health engineering abstracts. 3264
Deaths during week ended November 24, 1928:
Death claims reported by insurance companies 3269
Deaths in certain large cities of the United States 3270
PREVALENCE OF DISEASE
United States:
Current weekly State reports-
Reports for weeks cnded November 24, 1928, and November 26, 1927 3272
Summary of monthly reports from States 3274
Reciprocal notifications, October, 1928 3276
Plague-infected ground squirrel in California 3276
Influenza in Los Angeles, Calif 3276
Patients in institutions for the feeble-minded, April to June, 1928 3276
General current summary and weekly reports from cities. 3278
City reports for week ended November 17, 1928 3278
Summary of weekly reports from cities, October 14 to November 17, 1928-Rates-Comparison with 1927 3286
Foreign and insular:
Canada-Qucbec Province-Communicable diseases-Wcek ended November 17, 1928 3289
China-
Inner Mongolia-Plague 3289
Manchuria-Communicable diseases, year 1927-28 3290
Denmark-Communicable discases-September, 1928 3291
Federated Malay States-Vital statistics, 1927 3291
Great Britain-Scotland-Vital statistics-July-September, 1928 3291
Jamaica-Communicable diseases-Six weeks ended November 10, 1928 3292
New Zealand-Vital statistics-Comparative-Year ended March 31, 1928 and 1927 3282
Tunisia-Tunis-Vital statistics, 1927 3293
Cholera, plague, smallpox, typhus fever, and yellow fever-
Cholera 3294
Plague 3297
Plague rats on vessels 3302
Smallpox 3303
Typhus fever 3309
Yellow fever 3312

PUBLIC HEALTH REPORTS

VOL. 43

INFLUENZA PREVALENCE IN THE UNITED STATES

Reports from California have indicated an unusual prevalence of influenza in that State since the middle of October. The first cases occurred in the region around San Francisco Bay (see Public Health Reports Nov. 16, 1928, p. 3020). Later reports indicate that the epidemic has passed its peak in San Francisco, but has spread to other parts of the State.

Reports of cases of influenza are incomplete, as many cases are not reported. Sometimes a larger percentage of the cases are reported when the disease is present in epidemic form than are reported when only a few cases exist, but the numbers of reported cases in a community at different times give a rough index of the relative prevalence of the disease.
The following table gives the numbers of cases of influenza reported weekly by the State of California, since October 1, 1928, compared with reports for the corresponding period of the years 1927 and 1926.

Week ended-	1928	Corresponding week		Week ended-	1928	Corresponding week	
		1927	1926			1927	1926
Oct. 6, 1928.	27	23	18	Nov. 3, 1928..	2,389	18	12
Oct. 13, 1928.	34	19	15	Nov. 10, 1928..	2,596	14	21
Oct. 20, 1928	158	15	10	Nov. 17, 1928.	3,192	11	17
Oct. $27,1928$.	1,392	16	21	Nov. 24, 1928..	4,843	21	18

Reports of influenza from most parts of the United States do not show more than the usual seasonal increase in the number of cases, but the table on page 3272 shows that Oregon reported 250 cases for the week ended November 24, 1928, and 17 cases for the corresponding week in 1927. Montana reported 421 cases for the week this year and did not report any cases one year ago. South Carolina, Georgia, and Alabama have 2,107 cases of influenza in the table this year, as compared with 734 last year.
The accompanying graph gives a comparison of the reports of cases of influenza from 32 States for the years 1926, 1927, and 1928. It should be noted that during the first two of these years the incidence of influenza during the fall months was very low, and that the increase
shown for November, 1928, was influenced largely by the reports from a very few States.

The disease is mild in form, with few deaths as compared with the number of cases, and very few of the cases are complicated by

pneumonia. The following table shows the cases of influenza and the deaths from influenza and from pneumonia in San Francisco and Los Angeles from September 30 to November 24, 1928, inclusive:

| |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: |

A later report from Los Angeles is published on page 3276.
The table on page 3287 shows the death rates per 100,000 population from influenza and pneumonia in 101 cities for five weeks of the years 1927 and 1928. These cities have an aggregate population of about $31,000,000$. Although there was a decided increase in the number of cases of influenza during this period of 1928 as compared with 1927, the number of deaths from influenza and pneumonia in the entire group of cities was smaller than the number for 1927.

CURRENT WORLD PREVALENCE OF COMMUNICABLE DISEASES ${ }^{1}$

The United States, October 1-27, 1928

Morbidity from communicable diseases.-The prevalence of certain important communicable diseases as indicated by weekly telegraphic reports from State health departments ${ }^{2}$ to the Public Health Service from October 1-27 is summarized below.

Meningococcus meningitis.-The relatively high rate of meningococcus meningitis, which had prevailed throughout the year, was maintained during the month of October. For the four weeks ended October 27 there were 304 cases reported, as compared with 180 cases in 1927, and 110 in 1926 during the corresponding period.

Scarlet fever.-The increase in scarlet fever, which began in September, continued in the usual manner through the month of October. The rate of increase, however, was lower than in either of the two preceding years. Significant increases occurred in California, Utah, Iowa, Illinois, New York, Pennsylvania, Georgia, North Carolina, and West Virginia during the four weeks ended October 27.

Smallpox.-Reports indicated a normal seasonal increase in the incidence of smallpox. A slight decrease was noted in some States, but the general tendency was toward an increase. In Montana the cases increased from 17 during the two weeks ended October 13, to 32 for the two weeks ended October 27; in Oregon, from 31 to 59 ; in Idaho, from 6 to 21; in Wyoming, from 3 to 18; in Illinois, from 10 to 44 ; in Indiana, from 17 to 34 ; in West Virginia, from 0 to 9 . As compared with the two preceding years the rate of increase was very favorable, slightly lower than in 1927 and but a little higher than in 1926.

[^0]Measles.-The usual seasonal increase in the prevalence of measles began in October and will no doubt continue through the fall and winter months. The rate of increase followed that of the corresponding period in 1927 very closely, but was much lower than in 1926.

Diphtheria.-The diphtheria rate, although experiencing the usual seasonal rise, was considerably below the rate for either of the two preceding years for the month of October. An increase in the number of cases was reported from practically all sections of the country.

Influenza.-In California, there were 1,392 cases of influenza reported during the week ended October 27. Slight increases occurred in a few other States, but no unusual prevalence was noted elsewhere. Reports indicated that the disease was still slightly more prevalent during the current year than in either 1927 or 1926.

Typhoid fever.-A gradual decline in the number of cases of typhoid fever continued; and for the two weeks ended October 27 there were 1,159 cases reported-approximately 600 less than occurred during the preceding two weeks. The decline in prevalence was somewhat general, but the most significant decreases occurred in the Southern States. A lower rate was indicated than during either of the two preceding years.

Poliomyelitis.-The incidence of poliomyelitis declined rapidly during the month of October. The cases reported for the four weeks ended October 27 totaled 592, as against 1,105 for the preceding 4-week period. While the disease was considerably less prevalent during the current year, the rate was almost twice as high as that recorded in 1926. At no time was the high incidence of 1927 reached during the period under consideration.

Mortality from all causes.-The mortality from all causes in 67 large cities rose sharply during the first three weeks of October, but dropped during the fourth week to a lower rate (11.1) than was recorded in either 1927 or 1926 for the corresponding period; the rate for 1927 was 12.1 and for 1926 it was 12.2. Only for two previous weeks of the current year had the mortality rate been as much below the corresponding week of 1927 as it was during the week ended October 27. A slight increase over the preceding week occurred during the week ended November 3, but the rate of 11.7 was still slightly lower than for the same week in either of the two preceding years.

FOREIGN COUNTRIES ${ }^{1}$

The general prevalence of certain epidemic diseases in most foreign countries during August and September is summarized below.

Yellow fever.-From 1908 until this year the city of Rio de Janeiro has been practically free from yellow fever. The few cases which

[^1]have been reported during that period were in most instances errors in diagnosis or imported cases from sections of the country where yellow fever was endemic.

The disease reappeared during the second quarter of 1928 . The first suspected case was an artilleryman from the Campinho Barracks, near the city, who became sick on May 12 and died May 16; his death certificate, however, showed a different diagnosis.
A typical case of yellow fever was found among the civilian population on May 31, and cases continued to appear in various parts of the city. From the beginning of the outbreak up to October 4 there were 119 cases reported, 66 of which had terminated fatally. ${ }^{2}$

Dengue.-The outbreak of dengue, which occurred in Athens and Piraeus in August and September, is probably the most severe outbreak of the disease on record. A census of persons affected by dengue gave 239,000 cases up to September 4 in the town of Athens alone. It was officially estimated that 90 per cent of the population of Athens and Piraeus had been ill with the disease. Dengue is usually a mild disease which normally is not notifiable, and its presence in Mediterranean countries in 1927 had attracted little attention. Early in August it became apparent that the prevailing type of the disease was more severe. In Athens there were 413 deaths reported for the month of August and 218 for the first 20 days of September. In Piraeus there were 176 deaths in August; statistics for September had not been received. A number of cases of dengue were reported in various other countries, but there was no epidemic outside of Greece.

Plague.-Plague was, as usual, at its lowest ebb in most countries during August and September. There were, however, some important exceptions to the general low incidence of plague. In southern India the disease usually begins to spread in August, and in the Central Province, where the disease was most prevalent, 533 cases were reported during the two weeks ended August 25, as compared with 59 for the preceding two weeks. There were 358 cases in the Bombay Presidency and 103 in Mysore during these two weeks, as compared with 183 and 55 cases, respectively, during the first two weeks in August.
The Health Service of Argentina, South America, reported on September 24, five cases of pneumonic plague in one center in the Province of Santiago del Estero, and on October 9 it was stated that 11 deaths suspected to be from pneumonic plague had occurred during the month of September in a single area at Carapujio, in the same Province. Plague still continued to increase in Lagos, Nigeria, where it had been unusually prevalent since early in the year.

[^2]The North Manchuria Plague Prevention Service stated that there were 160 cases of bubonic plague at Tungliao, in Inner Mongolia, during the week ended September 15. The outbreak continued, and during the two weeks ended September 29, 117 cases were reported. Control stations were organized and the Russo-Mongolian frontier, which had been closed, was reopened.

Two cases of plague were reported in August in inland localities on the island of Hawaii.

Cholera.-Reports from India showed about the same incidence of cholera in July as during the corresponding month of the preceding year, but an average well above that of recent years was maintained throughout the month of August. The 7,548 deaths reported during the week ended August 11 was the highest weekly total recorded since 1924; of these deaths 2,000 occurred in the Madras Presidency. A considerable decrease was noted during the latter part of August. There was a serious outbreak in the Central India Agency, which reached its maximum in the middle of July. The incidence increased slowly during July and August in the Central Province.

A case of laboratory infection was reported at.Osaka on October 4. Twenty-three cases of cholera were reported during July and August in various localities in the Philippine Islands.

Typhus fever.-An increase of typhus fever occurred in the Union of Socialist Soviet Republics from February to March; in general, however, the disease has been much less prevalent in 1927 and 1928 than in previous years. The disease was more prevalent in the eastern governments, but there were a few important exceptions in the central and western countries, where some of the governments were considered as having an incidence of typhus fever above the average.

In Lithuania, typhus fever was more prevalent during the first seven months of the year than during the corresponding period of the three preceding years. An increase was reported in Bulgaria, up to September, over the preceding year. During the second half of May an outbreak of typhus began among the Chinese population of the Kwantung Territory; there were 1,775 cases reported up to July 1, 1928. The incidence decreased after the middle of July.

On the other hand, in Rumania, 425 cases were reported from January 1 to August 23, 1928, compared with 2,753 for the same period in 1927. The incidence was lower in Poland during the first two months of 1928 than in any previous year; 1,900 cases and 129 deaths were reported up to July.

Smallpox.-The incidence of smallpox in England and Wales, which, during the first quarter of 1928 , was lower than during the corresponding period of the previous year, differed little during the second and third quarters of the current year from its level in 1927.

During the first quarter of 1928 there were 4,711 cases reported. Fifty-five deaths were attributed to smallpox during the first half of 1928 , giving a reported case fatality rate of 6.3 per 1,000 cases, as compared with 36 deaths and a fatality rate of 3.6 per 1,000 during the first half of 1927.
The number of cases of smallpox has increased in Canada during the last two years; 2,117 cases were reported during the first half of 1928. Only three of these cases terminated fatally. There has been a marked decrease of alastrim in Jamaica during the last two years; 43 cases were reported during the first six months of 1928.

Diphtheria and scarlet fever.-The incidence of diphtheria and scarlet fever was higher in practically all of the European countries during the year ended June 30, 1928, than in the preceding years. While in some countries the increase was moderate, in others it was very considerable. In Scotland the number of deaths from diphtheria was twice as high as during any of the three preceding years. In Hungary and in Czechoslovakia the number trebled in the course of three years. The increase of scarlet fever was not as universal as that of diphtheria; but in Germany the number of cases reported during the year ended June 30, 1928, was about three times as high as that reported during the year ended June 30, 1927. In the Kingdom of the Serbs, Croats, and Slovenes the number of cases of scarlet fever nearly trebled during the past year.

The case fatality rate of diphtheria showed a tendency to increase during the last year in several countries, noticeable in the Netherlands, Germany, Austria, and Czechoslovakia. It decreased, on the other hand, in Poland, Rumania, and Bulgaria. The case fatality rate of scarlet fever decreased in most countries, being much lower than that of diphtheria in central and eastern Europe, as well as in Japan and New Zealand. In eastern Europe, on the contrary, it approaches that of diphtheria.

Mortality from diphtheria was considerably higher than that caused by scarlet fever in all European towns except those of eastern Europe. A large excess of scarlet fever over diphtheria occurred in Leningrad, Moscow, and Warsaw. In Egypt mortality from diphtheria has been particularly high, while the incidence of scarlet fever has been almost negligible.

Typhoid and paratyphoid fevers.-Typhoid fever was less prevalent up to the middle of September in practically all European countries. The only exceptions were France and England and Wales.

In England there was an increase in the prevalence of paratyphoid fever in London and neighboring localities. The paratyphoid outbreak began very suddenly during the last of July, but was of short duration, having almost subsided by September 15 :

Dysentery.-The incidence of dysentery in Europe began, as usual, to increase in August, but was lower in most countries than in previous years. The disease is usually more prevalent in Poland than in other countries of central Europe, but this year its incidence there was much lower than in any previous year. The number of cases reported in August in Rumania, the Kingdom of the Serbs, Croats, and Slovenes, Hungary, and Germany was about the same as in 1027.

There has been a considerable decrease in the incidence of dysentery in Europe. In the Union of Socialist Soviet Republics, where the disease is more prevalent than in the remainder of Europe, the number of cases decreased from 271,000 in 1924 to 135,000 in 1927. In Morocco the number of cases reported during the summer months of the current year was considerably in excess of those reported for the same period in the preceding year. In Japan, where dysentery is fairly widespread, the incidence up to August differed little from that of last year, but was higher than in the six preceding years. The seasonal maximum incidence of dysentery varies in different parts of the country. In Japan, Europe, and the Philippine Islands it occurs in August; on the other hand, in Java, dysentery is usually more prevalent in January and February.

Relapsing fever.-The decrease of relapsing fever in European countries continues, and the disease has become extremely rare. In the Union of Socialist Soviet Republics, where the disease is most prevalent, the number of cases reported during the first quarter of 1928 was considerably less than during the corresponding period of 1927. Minor outbreaks of relapsing fever were reported in West Africa, Nigeria, and the Gold Coast Colony.

CURRENT STATE MORTALITY STATISTICS

For the information of public-health officials and others interested, the data in the following tables have been compiled from the monthly mortality reports of State health departments for the latest month for which published records are available. Statistics of most communicable diseases are not included, since they are available in other tabulations in the Public Health Reports. Statistics of deaths from other causes are limited for the most part to those causes which appear in the State reports. In the case of States which publish detailed mortality reports each month, the record of only the principal groups of causes and certain important specific causes have been used.

For purposes of comparison, the mortality records for a few preceding years are given, the rates being for the month corresponding to the last month for which the 1928 rate is available.

These tabulations will be enlarged as the current data on mortality from additional States become available.

Monthly State mortality statistics

[All rates are on an annual basis, and, with the exception of mortality from all causes and infant mortality, are per 100,000]

	1928									Corresponding month			
	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	1927	1928	1925	1924
ALL CaUSES: ANNUAL RATE PER 1,000													
Alsbama:	10.4	10.1	10.7	9.5	9.5	9.6	9.3	8.7	8.7	8.6	8.7		
Colored	14.6	17.3	17.7	17.6	17.8	16.4	16.3	17.1	15.7	14.5	13.7		
California.	14.8	15.1	14.7	14.5	13.6								
Connecticut.	11.7	12.0	12.0	12.5	13.0	10.5	9.8	9.3		8.4	9.3	9.5	9.6
Indiana.-.	12.4	11.7	13.6	11.6	12.7	11.0	9.9	10.6		10.2	10.7	11.4	10.6
Iowa-....	10.2	11.7	13.8	11.4	10.9 10.9	9.3 9.4	9.9						
Louisiana	13.8	13.4	13.7	13.0	12.3	11.1	12.7	12.2					
Michigan.							9.9	9.7	10.6				
Minnesota-	9.5	9.6	9.6	10.6	10.7	8.3	13.1.	11.8	8.1				
Nebrasta						8.2	7.9	8.2					
New Jersey-	11.3	12.4	13.3	13.8	13.2	11.2	9.9	9.9	9.7	10.4	10.8	10.2	11.1
New York ${ }^{\text {a }}$	13.6	14.2	14.4	14.4	14.2	12.8	11.4	11.0		11.0	11.3	11.1	12.8
North Carolins	11.1	12.5	11.2	11.9	11.7	14.3	11.2	11.1	11.0				
Pennsylvania--	12.4	13.3	13.8	13.7	13.5	11.2	10.3	10.1		9.6	9.8	11.1	10.3
South Dakota					12.6								
Tennessee....	11.8	12.9	12.3	13.6	12.0	11.5				10.9			

INFANT MORTALITY: RATE PER 1,000 LIVE BIRTHS

INFLUENZA (11)

Alabama:													
White	89.1	83.9	98.8	78.9	67.3	26.8	16.8	11.9	12.3	12.8	11.5		
Colored	86.0	112.8	124.0	107.7	112.1	45.0	29.0	25.1	30.0	12.2	14.9		
California	23.0	25.4	21.4	17.1	15.2								
Connecticut	28.5	25.8	19.7	29.4	71.5	16.6	6.6	2.9		3. 7	3.0	2.3	1.6
Indiana	48.1	44.0	69.3	82.0	96.4	27.4	13.7	8.2		7.5	8.3	12.0	3.1
Iowa.	32.5	35.8	79.5	87.2	67.9	24.1	19.4						
Kansas	53.3	85.7	139.9	112.7	78.9	23.2							
Kentucky							11.5						
Louisiana	112.3	112.3	125.0	73.0	40.5	28.1	19.9	29.0					
Michigan.							9.0	5.4	8.7				
Minnesota.	21.2	22.7	29.8	58.1	104.2	24.1	13.8	7.8	8.0				
Mississippi							15.8	19.1					
Nebraska..						19.0	8.4	11.7					
New Jersey	12.6	16.1	24.7	28.0	23.7	9.2	3.7	3.4	4.8	3.2	3.0	3.0	1.7
New York	20.0	20.7	25.3	27.0	34.3	18.9	4.4	2.3		3.2	4.1	2.7	1.7
North Caroli	56.9	62.1	63.7	58.0	34.1	22.8	6.8	7.6	6.6				
Penlahoma--.	21.8	38.2	51.3	47.1	65.0	28.6	10.3	7.7		5.1	7.1	7.7	5.2
South Carolina	49.9	81.7	132.6	50.9	26.5	20.2	8.8	12.0	11.1	4.6			
South Dakota.					98.7	41.5							
Tennessee	77.2	89.5	88.5	112.3	74.4	40.8	16.0	13.2		10.0			
Wisconsin	24.7	24.7	30.7	70.9	83.7	25.1	11.6	5. 2					

Monthly State mortality statistics-Continued

1828									Corresponding month for-			
Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	1927	1926	1925	1924

TUBERCULOSIS, ALL FORMS (31-37)

Alabama: White	58.1	53.9	57.5	48.5	43.5	52.1	50.5	37.8	50.7	45.2	. 2		
Colored	136.9	179.1	162.2	184.0	160.9	182.6	172.7	168.8	128.1	146.8	177.9		
California	135.2	139.2	134.6	153.8	143.4								
Connecticut	63.5	75.1	83.9	77.6	71.5	73.9	68.6	55.4		47.5	74.8	59.3	4
Indiana.	67.8	67.4	88.2	76.2	81.9	80.6	57.5	58.9		62.4	79.1	60.1	79.9
Iowa.	32.0	32.1	38.8	36.6	45.6	35.6	38.3						
Kansas	29.5	52.8	49.4	49.1	43.6	39.8							
Kentucky	106.9	95.5	106.9	107.3	107.5	96.1	$\begin{aligned} & 73.8 \\ & 93.0 \end{aligned}$	96.0					
Michigan.							62.8	60.8	59.1				
Minnesota	51.5	64.7	60.1	55.0	64.0	47.8	43.7	54.9	50.1				
Mississippi						35.4	78.2 20.1	82.9 28.4					
New Jersey	65.0	70.8	78.9	83.1	88.3	87.2	68.4	76.1	66.9	60.0	85.3	71.0	. 1
New York ${ }^{1}$	66.5	82.1	82.5	88.5	82.5	82.9	73.2	71.1		75.4	73.7	79.1	94.1
North Carolin	74.1 59.7	87.8	86.6	88.2	93.8	106.4	65.7	81.8	77.9				
Pennsylvania	64.7	78.5	78.4	81.9	79.9	68.6	69.0	59.6		65.7	67.6	72.2	70.5
South Carolina	72.6	74.9	87.2	86.8	97.9	80.9	87.8	66.3	53.5	69.2			
Tenth Dassee.....	121.9	150.9	140.7	159.5	104.9	129.8		112.5					
Virginia.	121.8	150.9	140.7	159.5	104.8	129.8	134.1	66.1		119.4			
Wisconsin.	94.9	63.1	56.2	63.0	79.3	60.1	52.2	52.2					

CANCER, ALL FORMS (43-49)

DIABETES (57)

${ }^{1}$ Exclusive of New York City.

Monthly State mortality statistics-Continued

1928									Corresponding month for-			
Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	1927	1928	1925	1924

diseases of the nervous system and of the organs of special sense (${ }^{(0-86)}$

CEREBRAL HEMORRHAGE, APOPLEXY (74)

DISEASES OF THE CIRCULATORY SYSTEM (87-96)

Monthly State mortality statistics-Continued

1928									Corresponding month for-			
Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	1927	1926	1925	1924

DISEASES OF THE HEART (87-00)

PNEUMONIA, ALL FORMS (100, 101)

Alabama: White.	167.6	144.6	162.6	120.2	84.8	48.5	30.1	28.0	29.7	35.			
Colored	191.4	200.2	203.1	170.4	184.7	69.5	46.1	44.8	72.2	57.1	46.2		
California	131.3	132.9	115.8	88.9	74.7								
Connecticut	140.8	148. 6	151. 7	165.1	183. 1	72.4	34.3	34.3		44.5	27.2	37.7	27.4
Indiana	137.0	120.1	151.3	173.2	120.5	58.0	30.0	33.7		29.9	22.6	36.9	25.3
Iowa.	109.6	91.8	98.4	92.2	80.5	41.1	31.0						
Kansas	105.9	104.9	56.5	96.8	56.5	35.8							
Kentucky							32.7						
Louisiana.	164.2	157.5	160.0	119.2	102.6	41.2	46.5	52.5					
Michigan							37.4	21.3	37.6				
Minnesota	80.5	77.7	87.4	102.4	76.1	47.8	30.7	22.9	32.6				
Mississippi							25.0	23.0					
Nebraska.						32.0	15.1	18.4					
New Jersey	80.4	108.7	111.2	104. 1	86.3	52.2	39.4	36.4	54.1	28.9	24.5	25.3	33.9
New York ${ }^{1}$	120.4	131.3	152.8	152.9	126.3	80.2	36.4	35.1		34.7	33.8	37.6	32.9
North Carolin	150.7	164.5	168.7	125.5	93.4	91.5	40.5	24.8	31.5				
Oklahoma	188.0 131.0												
South Carolina	178.1	154.0 155.3	161. 7	168. 124	111.2	75.7 58.7	45.3	49.9	56.8	56.7	2.7	53.5	44.6
South Dakota					110.4	55.3							
Tennessee.	163.8	163.0	162.8	116.7	104.5	61.3	38.1	39.5		34.6			
Wisconsin.	95.3	93.8	83.7	128.5	116.8	99.7	40.7	29.9					

DISEASES OF THE DIGESTIVE SYSTEM (108-127)

[^3]Monthly State mortality statistics-Continued

	1928									Corresponding month for-			
	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	1927	1928	1925	1924

DIARRHEA AND ENTERITIS UNDER 2 YEARS (113)

NEPHRITIS $(128,129)$

Alsbama:													
White	74.7	66.7	75.7	73.9	68.0	80.4	74.3	60.3	73.9	73.0	58.0		
Colored	92.1	90.2	91.0	111.8	124.0	113.1	151.6	156.9	137.6	107.4	93.4		
California.	114.0	122.4	114.7	128.4	109.6								
Connecticut			71.5	73.1		89.0	67.8	57.6					
Indiana	70.4	86.8	85.6	90.0	83.0	76.1	71.2	77.1		78.5	$\left.{ }^{2}\right)$	76.1	
Iorra	62.0	54.4	53.8	52.6	52.4	56.1	61.6						
Kansas	85.3	96.7	112.9	114.0	94.3	78.9							
Kentucky							71.0						
Louisiana	114.1	127.8	123.2	120.4	131.6	99.2	120.2	102.6					
Michizan.							61.3	68.2	62.5				
Minnesota	66.2	62.4	54.5	61.7	54.9	38.0	45.9	4.5. 9	50.5				
Mississippi							101.9	106.5					
Nebraska.						44.9	44.3	44.3					
New Jersey	108.5	118. 6	124.8	108. 6	114. 6	98.7	95.2	84.7	90.4	86.3	84.3	69.6	95.0
New York ${ }^{\text {P }}$	121.8	117.6	120.0	127.0	121.4	104.2	93.0	94.1		99.8	95.2	89.5	94.5
Oklahoma	64.1 117.0	122.0	115.0	122.0	125.0	95.6	93.3	94.2		82.7	79. C	87.6	90.9
South Carolina	383.4	539.9	108. 6	3105. 7	595.4	5106.4	${ }^{3} 111.8$	${ }^{5} 87.8$	592.7	'102.9			
South Dakota					46.8	34.6							

PUERPERAL STATE (143-150)

[^4][^5]Monthly State mortality statistics-Continued

COURT DECISION RELATING TO PUBLIC HEALTH

Ordinance prohibiting bringing decayed fruit and refuse from households, etc., into town held invalid.-(New York Supreme Court; Donovan v. Town of New Windsor et al., 231 N. Y. S. 82; decided September 19, 1928.) A town ordinance provided as follows:

Be it resolved, That the bringing into the town of New Windsor, Orange County, New York, of decayed and spoiled fruit and refuse from households, restaurants and other eating houses, be, and the same is hereby prohibited, and that a violation of this resolution shall constitute a misdemeanor. This resolution shall become effective September 1, 1925.

An action was brought to restrain the enforcement of the ordinance. The plaintiff moved for an injunction pendente lite, which was granted, the court saying:

The ordinance in question is unreasonable and oppressive, because it prohibits rather than regulates the carrying of refuse into the town of New Windsor. It is a well-known fact that household refuse, decayed fruit, and garbage may be carried in sealed vehicles or containers without being in any wise offensive or a nuisance. The town board has power, by ordinance, to reasonably regulate the transportation of such materials in or through the town; but this ordinance is prohibitive rather than regulatory, and it is for that reason, in my opinion, invalid and unenforceable.

PUBLIC HEALTH ENGINEERING ABSTRACTS

Experience with Red Water at Southern Pines. C. O. Butler. Journal of North Carolina Section, American Water Works Association, vol. 5, No. 1, 1927, pp. 104-118. (Abstract by Chas. R. Cox.)

This article, together with lengthy discussions by several authorities, contains an interesting account of the problem of the prevention of corrosion of distribu-
tion systems. The raw water used at Southern Pines coagulates best at pH 5.2 to 5.4. Such treatment of the water naturally produced a highly corrosive filtered water. The difficulty was temporarily solved by the use of soda ash in sufficient quantities to produce a pH of 6.6 to 7.0. Red-water trouble developed again, however, and finally lime treatment was instigated, using the so-called "marble" test to determine the pH at which the CO_{2} would be neutralized by the lime, which was found to be about 8.4 to 8.6. Lime treatment based upon this procedure produced a noticeable coating on the inside of service pipes and prevented further red-water trouble.

One of the discussions of this paper outlined experiments made at the plant to determine the best treatment. These experiments included aftertreatment with lime, soda ash, and caustic soda, coagulation with sodium aluminate and alum, coagulation with lime and iron sulphate, aftertreatment with sodium silicate, pretreatment with calcium chloride and aftertreatment with sodium silicate, and aftertreatment with sodium silicate and lime. It was concluded that sodium silicate and lime was the best combination of chemicals to be used. These laboratory tests were made with the corrosion of iron filings and thus they were made under conditions quite different from those in distribution systems.

Another reviewer of the paper emphasized the importance of considering the problem from the standpoint of plant conditions, and advocated the use of the "marble" test to determine the quantity of lime to be used in aftertreatment.
Dissolved Iron and Manganese in Stored Water at Kernersville. W. H. Weir. Journal of North Carolina Section, American Water Works Association, vol. 5, No. 1, 1927, pp. 119-126. (Abstract by Chas. R. Cox.)
This valuable contribution to the limited literature of manganese and iron removal reviews unusual problems developed at Kernersville, N. C., when a new filtration plant designed to treat a typical turbid water of a flowing stream was placed in operation to treat the same water after storage in a shallow reservoir containing large quantities of organic matter. Storage of this water led to a marked change in its quality, leading to the solution of manganese and iron from mineral deposits at the site and to a large increase in the color of the water. Experiments conducted at the plant indicate that aeration of the water failed to precipitate the iron and manganese, probably due to the large organic content.

Prechlorination of the water, however, led to the precipitation of the iron and manganese, but the organic color remained unchanged. Addition of lime to the raw water produced excellent flocculation of the iron and manganese, but no change in the organic color. Subsequent coagulation with alum, however, resulted in a reduction of the color. Experiments were duplicated on a plant scale by the addition of lime to the raw water entering the mixing basin. The dose of lime was determined by the maintenance of a faintly caustic reaction to phenolphthalein. The formation of the iron hydroxide was extremely rapid, allowing the alum solution to be added about half way down the mixing chamber. The alum dose was adjusted to maintain the optimum pH for color coagulation. The sedimentation of the floc, however, was slow so that the settled water was more turbid than desirable, thus requiring frequent washing of the filters and the use of large volumes of wash water.
The above situation indicates the great desirability of thoroughly studying the quality of a raw water to be treated before the final plans for water-purification plants are completed, in order that the plant may be provided with the necessary auxiliary equipment, and for special treatment when such is necessary.
Succinchlorimide Proposed as a Chemical Agent for the Preparation of Potable Water. C. B. Wood. Military Surgeon, vol. 63, No. 4, October, 1928, pp. 493-506. (Abstract by C. T. Butterfield.)

A brief historical sketch is given in this article of methods used to render potable water in large and small quantities. Unpublished data are presented showing that "halazone" is quite satisfactory, and "nuklorene" entirely unsuitable for use as a bactericidal agent in water.

A chlorine containing organic compound to be used by the Army for preparing potable water in the field must be: (1) A solid at ordinary temperatures and pressures; (2) capable of prompt reaction in water with bactericidal action; (3) stable over periods of years rather than weeks or months, and (4) nontoxic to the human body.

The qualifications of a number of compounds to meet these conditions are given and discussed. The method of preparation of succinchlorimide and experimental evidence to show that it has the four required qualifications are then presented.

Chemical Engineering Applied in New St. Louis Water Plant. C. W. Cuno. Chemical and Metallurgical Engineering, April, 1928, p. 230-1. Abstract by Rudolph E. Thompson in Water and Water Engineering, vol. 30, No. 355, July 20, 1928, p. 341.

In this article details are given of the new Howard Bond purification plant on the Missouri River. The river water will be pumped into two primary Dorr clarifiers providing a detention period of 2 hours and 10 minutes at the rated capacity of $55 \mathrm{~m} . \mathrm{g}$. d., thence flowing to an S-shaped mixing conduit, milk of lime being added at the inlet and iron sulfate at the outlet. From the mixing conduit the water will be introduced tangentially at the top of circular mixing tanks 65 feet in diameter, flowing through secondary Dorr clarifiers of the same size as the primary ones into coagulation basins. The settled water will be recarbonated with flue gas from the boiler house, treated with alum in a second mixing chamber and settled in secondary coagulation basins. From the latter the water will pass to 20 rapid sand filters, and the effluent will finally be treated with chlorine.

Final Report on Double Coagulation Studies at Cincinnati. Clarence Bahlman and E. B. Evans. Seventh Annual Report of Ohio Conference on Water Purifcation, October, 1927, pp. 60-63. (Abstract by J. K. Hoskins.)

This is a final summary report of double coagulation studies first discussed in the Sixth Annual Report of the Conference. The summarized data of operation are presented in the form of tables which are briefly discussed under headings of (a) general comparison of single and double coagulation, (b) additional safeguards in plant operation, (c) will double coagulation permit temporary elimination of the chlorination process? (d) effect of primary coagulation upon secondary chemical doses, (e) effect upon filter runs and waste water used and (f) costs. The experiments were conducted using alum as a coagulant. The conclusions as drawn by the authors are:
"The process of double coagulation is of great value at times of high turbidity and pollution in the raw water. Plant operation becomes more responsive to control, and additional safeguards are introduced. Combined with excess lime treatment, a means is afforded of eliminating phenol tastes without any depreciation in the bacterial quality of the water. The process gives promise of being of assistance when diatoms seriously interfere with filter operation. For at least 60 per cent of the time this plant can function with single coagulation satisfactorily as in the past. The use of the double process is advisable only under unusual loads. The additional cost then will be but $\mathbf{\$ 6 , 5 0 0}$ per annum, equivalent to $\mathbf{3 6}$ cents per million gallons. This is but slightly more than the present cost of chlorination."

Effects of Water on Teeth in Europe. Frederick S. McKay. Water Works Engineering, vol. 81, No. 15, July 18, 1928, pp. 1037-38 and 1051-52. (Abstract by Arthur P. Miller.)
This is a continuation of the discussion of this subject by this author. Other articles have appeared in Water Works Engineering for January 15, June 1, July 1, and August 1, 1926.
References to literature bearing on mottled teeth in Italy are cited and the author then presents evidence collected by himself personally during a trip to Italy in August, 1927, which points to a relationship between the mottled teeth of the inhabitants of the area about Naples and some deleterious chemical in the drinking-water supply of those inhabitants. The author states that "not one individual who had used water from these wells [Note: the wells discussed are those suspected of containing deleterious chemicals] during..the enamel-growing period had escaped the enamel defect." The evidence as presented is very interesting and without further knowledge of some other factor certainly points toward the water supply.
Chlorination Method Used to Destroy Algæ Growths. L. B. Mangun. Water Works Engineering, vol. 81, No. 15, July 18, 1928, p. 1076. (Abstract by Arthur P. Miller.)
At Kansas City, Kans., efforts to destroy Tetrastrum, an algæ, in one of the reservoirs with copper sulphate was not successful. Chlorination was then tried with such success that plans to cover the reservoir at an expense of $\mathbf{\$ 1 4 6 , 0 0 0}$ were laid aside.
Within the reservoir near one of the walls there is a well terminating one of the pipes leading from the reservoir to the pumps. Due to the arrangements of sluice gates in this well, it was possible by the proper manipulation of the gates to obtain reasonable rotation of the water in the reservoir. The incoming water carried the chlorine, and this rotation gave good mixing. It should be noted that this was not an effort to chlorinate the incoming water but to chlorinate the water in the reservoir.
Chlorination was done at night about three times a week during the summer. A dose of $1 \mathrm{p} . \mathrm{p} . \mathrm{m}$. showed a residual at $6 \mathrm{a} . \mathrm{m}$. of $0.2 \mathrm{p} . \mathrm{p} . \mathrm{m}$. at the periphery and $0.02 \mathrm{p} . \mathrm{p} . \mathrm{m}$. in the center. By $9 \mathrm{a} . \mathrm{m}$. all traces of chlorine had disappeared. After starting this work no further complaints were received by those getting water from this reservoir.

Innovations Increase Output of Filters. Caleb M. Saville. Water Works Engineering, vol. 81, No. 12, June 6, 1928, pp. 779-780 and 857. (Abstract by R. C. Beckett.)

Hartford is adding two $3 / 4$-acre slow sand filters to the eight present filters each about one-half acre in extent. Rates of filtration vary from three to five million gallons per acre per day although rates as high as 7.5 million gallons have been maintained. Color is reduced one-third.

Development of a boxless type of ejector used in sand pile enables one man with a fire hose to do work formerly done by six men. Additional Nichols sand separators operated in parallel from the ejector at lower pressures resulted in less loss of'sand and more sand handled in less time. Time of washing filters was cut from three to two days. Percentage of wash water used for the year was one-eighth of 1 per cent of the total effluent.

Experiences With Crenothrix in Ground Water Supplies. K. W. Brown. Municipal News and Water Works, vol. 75, No. 2, August, 1928, pp. 93-94. (Abstract by J. L. Robertson.)

This article discusses methods for combating Crenothrix growth by the application of chemicals. It is pointed out that the possibilities of success are greater
when the supply consists of central pumping stations and purification plants. When the distribution mains are supplied direct from scattered wells, the problem is far more intricate.

Experiences at several supplies are given outlining the application of chlorine and of copper sulphate. Chlorine was applied in one instance at the rate of 0.60 p. p. m. Complaints were received and the rate lowered to $0.40 \mathrm{p} . \mathrm{p} . \mathrm{m}$. with good results. Attempts to lower the rate further resulted in a return of obnoxious conditions. Introducing copper sulphate in solution remedied conditions at one infected well, but this procedure is termed as a matter of change. The most obstinate conditions dealt with are at Stockton, California. Treatment of this supply is discussed in detail.

The author summarizes "it appears that Crenothrix infections in ground water supplies can be eliminated by application of either copper sulphate or chlorine in those systems operating pumping plants augmented by reservoirs of adequate capacity. It is advisable, however, in order to avoid occurrence of obnoxious conditions, that introduction of the chemical be made prior to the reservoir. For systems operating a series of scattered wells there is apparently little opportunity of destroying filamentous organisms; resorting to chemical treatment will occasion inevitably distressing features the extent of which can not be foretold. Combating algæ by chemical application to water pumped directly to distribution from a system of scattered wells is, therefore, nothing less than a gamble, with odds somewhat in favor of the Crenothrix survival."

The Viability of Algæ. Anon. Science, vol. 68, No. 1754, August 10, 1928, pp. 134-135. (Abstract by H. V. Pederson.)

When the familiar and widely distributed algæ sphærella sommerfeldt becomes lodged upon the surface of the earth in the absence of water the cells change from a green to red color and are provided with a thick wall. These cells retain life for a surprisingly long period of time in a dry condition. Experiments have proved that this algæ has shown signs of life after resting for 75 years. The author of this article describes personal experiments in which he records the following data:

Specimens of algæ were collected and placed in corked bottles. At regular intervals samples were removed and planted in favorable growing conditions. At the start of the experiment the red resting cells became green and motile within 48 hours. As time passed the time of motility increased. After seven years of resting the time required for the specimen under experiment "to come to life" was 6 to 7 days. The author hopes to continue his test for viability on this same culture to ascertain how long the algæ will remain viable.

Ozonizing Water-A French Practice. John H. D. Blanke. Water Works Engineering, vol. 81, No. 16, August 1, 1928, pp. 1105-6 and 1125-26. (Abstract by Frank Raab.)

This article is an excellent review of French experience with the use of ozone in the sterilization of public water supplies large and small. It describes four well-known processes, namely, the Chevrier and Salles process, the Begot process, the Van Der Made process and the Otto process. An approximate cost of purifying water by some of these processes is given. Ozonization of waten supplies is well established for its effectiveness and its dependability. In 1913 there were 49 water supplies totaling $84,000,000$ gallons daily, which were sterilized with ozone. In a number of cases the raw water is filtered before it is treated; in a few cases alum is used for coagulation; but in all cases a pure and palatable water is secured. Besides sterilizing ozone also decolorizes and deodorizes bad-tasting and smelling waters. "Absolutely undrinkable water is made as pure and as good as the best spring water." The cost of ozonization for French conditions is
from one-half to two centimes per cubic meter. Calculating five francs to $\$ 1$, this means a cost of about $\$ 3.75$ to $\$ 15$ per million gallons.

The article also gives the results and observations of the first workers with ozone, as well as the physical and chemical properties of it. (Abstracter's note: Small filter plants which experience great troubles with tastes and odors resulting from algae might well consider the ozonization of their water supply.)

Water Supply. Carl Gross. Illinois Health News, vol. 14, No. 5, May, 1928, pp. 154-156. (Abstract by H. M. Freeburn.)
Inspections indicate that less than one-tenth of 2,000 wells inspected at tourist camps, farms, and schools are located and permanently constructed so as to be pollution proof at all times. Water in many school wells is contaminated by filth deposited on poorly constructed well tops. This article advocates proper location and protection of wells at rural schools to serve as models for the repair of defective farm wells and gives graphical diagrams to show results of inspections and bacteriological analyses of 68 school wells in one county. Three of the wells were within 15 feet of chemical toilets. It is stated that wells should never be less than $\mathbf{5 0}$ feet from toilets, sewers, and cesspools.

Wells with wooden tops or manholes are not eligible to receive safe water seals because such wood construction necessitates more frequent repairs, gives temporary appearance, and may permit contamination of the well. \cdots Of the 68 wells inspected, 27 apparently were substantial and permanent and justified an award of a safe water seal.

Bacteriological analyses of water from 50 wells indicated only two bad and eight doubtful. Most of the supplies inspected were either driven or drilled wells.

Chlorine Absorption of Water. H. Wette. Arch. f. Hyg. 1928, 99 : 143-57. Abstract by Arthur P. Miller in Bulletin of Hygiene, vol. 3, No. 8, August, 1928, p. 665.

A measurement of chlorine absorption is useful in providing a better criterion of the presence of certain albuminoid bodies than by the oxygen absorbed test (as measured by the Kubel-Tiemann process) and in giving an indication of the amount of chlorine needed in the disinfecting process of water purification.

Various methods of testing for chlorine absorption, the results of which tests depend somewhat on the method, are discussed. Test samples of boiled tap water to which urea was added were subjected to the following three methods of obtaining chlorine absorption: Froboese method-large excess of reagent and heating; Bruns method-addition of $1-2 \mathrm{p} . \mathrm{p} . \mathrm{m}$. of chlorine, reaction in cold followed by titration of excess; Olszewski method-testing for slight excess with benzidine.
It was concluded that albuminoid substances like urea, carbohydrates represented by sugar, and fats represented by olive oil, do not affect the dose required for chlorination. Other experiments indicated that a high bicarbonate content and pH value favor high chlorine absorption.

DEATHS DURING WEEK ENDED NOVEMBER 24, 1928

Summary of information received by telegraph from industrial insurance companies for the week ended, November 24, 1928, and corresponding week of 1927. (From the Weekly Health Index, November 28, 1928, issued by the Bureau of the Census, Department of Commerce)

	Week ended Nov. 24, 1928	$\begin{gathered} \text { Corresponding } \\ \text { week, } 1927 \end{gathered}$
Policies in force	72, 242, 758	69, 519, 120
Number of death claims	14, 333	11, 263
Death claims per 1,000 policies in force, annual rate. \qquad	10. 4	8.4

Deaths from all causes in certain large cities of the United States during the week ended November 24, 1928, infant mortality, annual death rate, and comparison with corresponding week of 1997. (From the Weekly Health Index, November 28, 1928, issued by the Bureau of the Census, Department of Commerce)

City	$\begin{aligned} & \text { Week ended Nov. } \\ & 24,1928 \end{aligned}$		$\begin{aligned} & \text { Annual } \\ & \text { death } \\ & \text { rate per } \\ & 1,000 \text {, } \\ & \text { corre } \\ & \text { sponding } \\ & \text { week, } \\ & 1927 \end{aligned}$	Deaths under 1 year		Infant mortality rate, week ended Nov. 24, 1988 ${ }^{2}$
	Total deaths	Death rate ${ }^{2}$		Week ended Nov. 24, 1928	$\begin{gathered} \text { Corre- } \\ \text { sponding } \\ \text { week, } \\ 1927 \end{gathered}$	
Total (68 cities).	7,227	12.7	11.6	674	612	${ }^{3} 57$
Akron.	47			10	3	107
Albany	43	18.7	13.5	0	2	0
Atlanta	83	17.0	15.7	11		
White.	42		11.0	7	8	
Colored	41	(3)	26.8	4	6	
Baltimore ${ }^{\text {- }}$	261	16.4	14.7	25	26	80
White.	186		12.5	- 18	19	72
Colored	75	(b)	27.3	7	7	109
Birmingham	57	13.4	15.6	9	8	77
White	24		12.2	3	3	41
Colored	33	(3)	20.9	6	5	135
Bridgeport.	36			1	2	17
Bufialo...	153	14.4	11.4	14	8	61
Cambridge	25	10.4	9.7	3	1	54
Camden.-	40	15.4	11.8	7	2	112
Canton	16	7.2	7.8	1	3	23
Chicago ${ }^{4}$	769	12.7	10.4	49	56	42
Cincinnati.	145	18.3	17.3	18	13	107
Cleveland.	159	8.2	10.3	20	19	54
Columbus.	68	11.9	11.8	4	8	37
Dallas.....	51	12.2	9.9	5	6	
- White	38		7.4	3	5	
Colored	13	(5)	28.6	2	1	
Dayton.	46	13.0	12.7	4	4	64
Denver	88	15.6	13.3	5	7	
Des Moines.	36	12.4	13.3	4	1	71
Detroit.-	302	11.5	9.9	45	34	70
Duluth.	17	7.6	10.9	2	4	47
El Paso.	29	12.9	17.0	5	4	
Erie.	18			0	3	0
Fall River ${ }^{4}$	37	14.4	8.7	5	1	91
Flint	24	8.4	8.0	8	2	104
Fort Worth	55	16.9	11.8	5	6	
White	48		- 9.8	3	6	
Colored	7	${ }^{(5)}$	26.6	2	0	
Grand Rapids.	35	11.1	9.0	6	5	
Houston.-	80			4	2	
White					2	
Colored					0	
Indianapolis.		11.5	13.5	7	9	- 54
White	70		- 11.9	5	8	45
Colored.	14	${ }^{(5)}$	25.6	2	1	111
Jersey City	67	10.8	9.4	4	7	31
Kansas City, Kans.	34	15.0	18.2	3		$4{ }^{67}$
White........	29		- 15.2	3	3 3	3 (76
Colored.-...	5	${ }^{(5)}$	32.0	0	- 1	10 73
Kansas City, Mo	112	15.0	- 14.6	9	8 - 4	4 4 73
Knoxville......-	36	17.9	12.8	8	8 3	3 175
White	30		10.4	5	51	1 122
Colored.	6	(5)	29.9	3	3 - 2	2 635
Los Angeles....	307			- 27	7 18	87
Louisville......	71	11.3	-13.2	- 7	7 7 \%	2 57 2 65
White	51		- 10.8	8	$7{ }^{7}$	2 l
Colored..-	20	(b) ${ }^{\text {c }}$	26.7		0 0	0 - 0
Lowell.....	25	11.9	- 14.7		5 6	6 109
Lynn	18	8.9 17.9	-10.4		11 2 6	2 27 5 71
Memphis.......	65 37	17.9	19.2 14.9		1 5 3 5	5 71 0 57
Colored	28		-14.9 27.1		3 0 3 5	0 5 94
Milwaukee.	84	8.1	110.2	212	2 15	5 54
Minneapolis.	84	9.6	\% 10.5		47	7 - 24
Nashville...	39	14.6	615.1		6	2100
White	19	---------	- 17.9		3 1	1 -67
Colored.	20	(5)	8.0		3 - 1	1 194
New Bedford.	30	13.1	1 13.1		2 0	0 - 43
New Haven.-.	37	10.3	3 14.1		18	5 - 15
New Orleans...-.	140	17.0	0 18.2		22	12 -60
White-.-........		---->.	-- 14.8		8	5 60 7 61

(See footnotes at end of table)

Deaths from all causes in certain large cities of the United States during the week ended November 24, 1928, infant mortality, annual death rate, and comparison with corresponding week of 1927-Continued.

: Annual rate per 1,000 population.
${ }_{3}^{2}$ Deaths under 1 year per 1,000 births. Cities left blank are not in the registration area for births.
${ }^{3}$ Data for 69 cities.

- Deaths for week ended Friday, Nov. 23, 1928.
${ }^{5}$ In the cities for which deaths are shown by color the colored population in 1920 constituted the following percentages of the total population: Atlanta, 31; Baltimore, 15; Birmingham, 39; Dallas, 15; For Worth, 14; Houston, 25; Indianapolis, 11; Kansas City, Kans., 14; Knoxville, 15; Louisville, 17; Memphis, 38; Nashville, 30; New Orleans, 26; Richmond, 32; and Washlngton, D. O., 25.

PREVALENCE OF DISEASE

No health department, State or local, can effectively prevent or control disease without knowledge of when, where, and under what conditions cases are occurring

-

UNITED STATES

CURRENT WEEKLY STATE REPORTS

These reports are preliminary and the figures are subject to change when later returns are received by the State health officers

Reports for Weeks Ended November 24, 1928, and November 26, 1927
Cases of certain communicable diseases reported by telegraph by State health officers for weeks ended November 24, 1928, and November 26, 1927

${ }^{1}$ New York City only. ${ }^{2}$ Exclusive of Kansas City, Mo. ${ }^{2}$ Week ended Friday.

Cases of certain communicable diseases reported by telegraph by State health officers for weeks ended November 24, 1928, and November 26, 1927-Continued

Division and State	Diphtheria		Influenza		Measles		Meningococcus meningitis	
		Week ended NOV. 26, 1927 28, 192	Week ended 24, 1928	Week ended 28, 1927	Week ended Nov.	Week ended NOV. 26, 192	Week ended Nov. 24, 1928	Week ended Nov. 26, 1827
East South Central States:								
Tennesseo-...-.......-.	37	42	97	37		102	1	0
Alabama	151	104	191	67	22	40	3	0
M ississippl--------	49	42					0	0
West South Central States:								
Louisiana.	38	45	22	10	92	17	0	2
Oklahoma	88	82	87	36	9	26	1	1
Texas.---	77	92	19	52	2	23	0	0
Mountain States:								
W yoming....	4						0	
New Mexico.	7	${ }^{9}$	42		2	14	0	0
Division and State	Week onded Nov. $\mathbf{2 4 , 1 9 2 8}$	Week ended Nov. 26, 1927	Week ended Nov. 24,1928	Week ended Nov. 26, 1927	Week ended Nov. 24, 1928	Week ended Nov. 20,1927	Week ended $\underset{\text { 24, } 1928}{\text { No7. }}$	Week ended Nov. 26, 1927
New Hampshire.		6	21	40			0	
Vermont-.---	0	0	15	8	2	0	0	0
Massachusetts	2	19	202	170	0	0	4	7
Rhode Island	1	1	17 51	17 36	0	0	3	3
Middle Atlantic States:								
New York.-.-.-...-	6	12	290	273	0	8	20	36
New Jersey--	0	8	102	114	0	0	8	${ }^{6}$
Pennsylvania-----	4	10	404	350	0	0	40	20
Ohio-....................	East North Central States:	29	169	209	21	5	21	7
Indiana	0	2	84	118	34	93	4	3
Illinois.	2	4	288	233	40	17	21	19
Michigan-	2	${ }^{2}$	219	156	22	12	12	13
Wisconsin - -.-. ------	1	7	148	114	18	23	0	1
West North Central States:								
Iowa...								
Missouri ${ }^{\text {a }}$	0	2	84	81	10	88	26	12
North Dakota	3	0	26	76	0	14	2	5
South Dakota	1	1	7	28	10	2	3	2
Nebraska.	0	8 3	- 419	42 117	14	$\begin{array}{r}5 \\ 32 \\ \hline\end{array}$	3 8	3 7
South Atlantic States:								
Maryland ${ }^{\text {a }}$ -								
North Carolina	0	0	149	71	10	28	15	8
Florida.	0	0	12	7	0	0	0	1

[^6]Week ended Friday.

- Figures for 1928 are exclusive of Oklahoma City and Tulsa and for 1927 are exclusive of Tulsa

Cases of certain communicable diseases reported by telegraph by State health officers for weeks ended November 24, 1988, and November 26, 1987—Continued

${ }^{2}$ Week ended Friday.
4 Figures for 1928 are exclusive of Oklahoma City and Tulsa and for 1927 are exclusive of Tulsa.

SUMMARY OF MONTHLY REPORTS FROM STATES

The following summary of monthly State reports is published weekly and covers only those States from which reports are received during the current week:

[^7]
September, 1888

Delaware:	Cases
Ophthalmia neonatorum.	
Whooping cough	

October, 1928

Actinomycosis:
California... 1

Anthrax:

Mississippi.....-.-.. 2
Rhode Island... 1
Chicken pox:
Alabama . .-... 25
California-.....-... 699
Georgia......-.. 16

Iowa-......-.-.-.-.. 167
Mississippi.. 226
Missouri... 152
North Carolina.-.-..................................... 161
Oklahoma 1... 17

Rhode Island.. 8
South Carolina .. 34
Wisconsin...-.-.. 867
Coccidoidal granuloma:
California-... 4
Conjunctivitis:
Georgia_-... 2
Denguz:
Alabama.-... 10
Georgia_.. 12
Mississippi.-.-.....-.................................... 198
Ok!ahoma ${ }^{1}$... 1
South Carolina ... 102
Dysentery:
California (amebic) 1
California (bacillary) 5
Georgia... 23
Illinois ... 28
Mississippi (amebic).................................... 36
Mississippi (bacillary)............................. 350
Oklahoma 1-.. 17
Oregon... 1
German measies:
California
Ilinois.-..-.-... 17
North Carolina_-...................................... 6
Wisconsin.. 14
Hookworm disease:
Georgia
7
Mississippi........-.. 286
Oklahoma ${ }^{1}$-.. 1
South Carolina.. 82
Impetigo contagiosa:
Oregon... 15
Jaundice:
California... 1
Lead poisoning:
Illinois.
7
Leprosy:
California
Lethargic encephalitis: Cases
California 6
Idaho 1
Illinois 4
Oregon 1
Wisconsin 1
Mumps:
Alabama 17
California 79:
Georgia 15
Idaho 1
Illinois 160
Iowa 89
Mississippi 173
Missouri 37
Oklahoma ${ }^{1}$ 2
Oregon 23
Rhode Island 1
South Carolina 14
Wisconsin 119
Milk sickness:
Illinois 1
Ophthslmia neonatorum:
Illinois. 53
Mississippi 7
Missouri 1
North Carolina 1
Rhode Island 2
South Carolina 13
Paratyphoid fever:
California 2
Gsorgia 5
Idaho 3
Illinois 1
South Carolina 4
Pucrperal fever:
Illinois 13
Mississippi 41
Rabies in animals:
California 65
Illinois 36
Mississippi 5
Oregon 1
Rhode Island. 14
South Carolina 7
Rabies in man:
Georgia 1
Iowa 1
Scabics:Oregon43
Septic sore throat:
Georgia 42 42
Illinois. 10
Iowa 1
Missouri 13
North Carolina 11
Oklahoma ${ }^{1}$ 14
Oregon 5
'retanus:
California 4
Georgia 1
Illinois 5
Missouri 1
Oklahoma 1 2
South Carolina 1
Wisconsin 5
${ }^{1}$ Exclusive of Oklahoma City and Tulsa.

Trachoma:	Cases
California	. 177
Idaho.	- 1
Illinois	11
Mississippi	6
Missouri.	27
Oklahoma ${ }^{1}$	17
Wisconsin	- 5
Tularsemia:	
California	1
South Carolina.	1
Typhus fever:	
Alabama.	2
Georgia.	8
Undulant fever:	
California.-	1
Georgia	1
${ }^{1}$ Exclusive of Okl	

Undulant fever-Continued. CasesWhooping cough:Alabama
California 59
Georgia. 826
Idaho 40
Illinois 397
Iowa 39
Mississippi 54
Missouri 122
North Carolina 252
Oklahoma ${ }^{1}$ 25
Oregon 8
Rhodo Island
35
35
South Carolina 148
Wisconsin 414
${ }^{1}$ Exclusive of Oklahoma City and Tulsa.

RECIPROCAL NOTIFICATIONS

Notifications regarding communicable diseases sent during the month of October, 19玉8, by departments of health of certain States to other State health departments

Disease	California	Illinois	Massachusetts	$\underset{\text { sota }}{\text { Minne- }}$	$\begin{aligned} & \text { New } \\ & \text { Jersey } \end{aligned}$	New York	Washington
Diphtheria				1		1	
Encephalitis	${ }^{1} 1$						
Malaria	2						
Measles.						2	
Poliomyelitis						2	
Smallpox...		1			1		
Tuberculosis.				38			
Tularaemia.	1						
Typhoid fever..	3		5	3	1	5	

${ }^{1}$ Epidemic.

PLAGUE-INFECTED GROUND SQUIRREL IN CALIFORNIA

A ground squirrel which was captured September 12, 1928, 11/2 miles south of New Hall tunnel, Los Angeles, Calif., was proved positive for plague September 17, 1928. An intensive eradication campaign was conducted in the vicinity but no other plague-infected squirrel has been found.

INFLUENZA IN LOS ANGELES, CALIF.

A telegram from the health commissioner of Los Angeles, Calif., dated November 28, 1928, states that the onset of the epidemic of influenza occurred November 13. The total number of cases reported from November 1 to 27 was 2,928, with 51 deaths. The disease is mild in type. It is estimated that about one-fifth of the cases are reported.

PATIENTS IN INSTITUTIONS FOR THE FEEBLE-MINDED, APRIL T0 JUNE, 1928

Reports for the second quarter of the year 1928 have been received by the Public Health Service from 25 institutions for the care of the feeble-minded, located in 22 States. On June 30, 1928, there were

29,815 patients in these institutions, including those on temporary leave. The first admissions were as follows:

	Male	Female	Total
April.	173	108	279
May.-	167	117	284
June.-	145	99	244
Total	485	322	807

Of the first admissions 60.1 per cent were males and 39.9 were females, the ratio being 151 males per 100 females. On June 30, 1928 , there were 15,716 male patients and 14,099 female patients, giving a ratio of 111 males per 100 females.
During the three months 218 patients were discharged, 107 males and 111 females. Two hundred and fifty-four patients died, the death rate being for males, 38.1 per 1,000; for females, 30.8 ; and for persons, 34.7 per 1,000 . These death rates are on an annual basis computed on the estimated population of the institutions as of the middle of May, 1928.

Data showing the numbers of patients on temporary leave are available for 23 institutions for the first six months of the year 1928.
During the first quarter of the year there was a small decrease in the number of patients absent on temporary leave, but during the second quarter the number on leave increased 18.8 per cent, although during these three months the total number on the books increased only 1.4 per cent, and the number in the institutions decreased slightly.

The following table shows the numbers of patients in the institutions and on temporary leave at the end of each month from January to June, 1928, and the percentage of the total patients who were on leave.

	$\begin{gathered} \text { Jan. 31, } \\ 1928 \end{gathered}$	$\begin{gathered} \text { Feb. 29, } \\ 1928 \end{gathered}$	$\begin{gathered} \text { Mar. 31, } \\ 1928 \end{gathered}$	$\begin{aligned} & \text { Apr. } 30, \\ & 1928 \end{aligned}$	$\begin{gathered} \text { May 31, } \\ 1028 \end{gathered}$	$\begin{gathered} \text { June 30, } \\ 1928 \end{gathered}$
Patients in institutions:						
Male.	12,438	12,605	12,699	12,769	12,802	12,588
Female	11,729	11,770	11,824	11,846	11,839	11, 683
Total	24, 167	24, 375	24, 523	24,615	24, 641	24, 271
Patients on temporary leave:						
	1,993	1,958	1,923	1,957	2, 015	2,303
	1,560	1,497	1,486	1,525	1,561	1,760
Total.	3,499	3,455	3,419	3,482	3, 576	4,063
Total patients on books:						
	14,431	14,563	14,622	14.726	14,817	14,891
Female	13,235	13,267	13,320	13,371	13, 400	13, 443
Total	27,603	27,830	27,942	28,097	28,217	28,334
Per cent of total patients on temporary						
Male.						
Female.	11.4	11.3	11.2	11.4	113.6	13.1
Total	12.6	12.4	12.2	12.4	12.7	14.3

GENERAL CURRENT SUMMARY AND WEEKLY REPORTS FROM CITIES

The 97 cities reporting cases used in the following table are situated in all parts of the country and have an estimated aggregate population of more than $31,450,000$. The estimated population of the 91 cities reporting deaths is more than $30,750,000$. The estimated expectancy is based on the experience of the last nine years, excluding epidemics.

Weeks ended November 17, 1928, and November 19, 1927

	1928	1927	Estimated expect- ancy
Cases reported			
Diptheria:			
43 States..	2,563	3,058	
97 citios..			1,307
Measles: 42 States.	2,591	2,652	
97 citios	568	735	
Poliomyelitis:			
	68	300	
Scariet fever:	3,251	3581	
97 cities.	1,015	1,040	1.002
Smallpox:			
43 States.	389	484	
97 cities	21	111	33
Typhoid fever:			
97 cities...	61	480 89	π
Deaths reported			
Influenza and pneumonia: 91 cities	686	701	
Smallpox:			.-.
91 cities	0	1	.-......
Chicago, Ill.......	0	1	

City reports for week ended November 17, 1928
The "estimated expectancy" given for diphtheria, poliomselitis, scarlet fever, smallpox, and typhoid fever is the result of an attempt to ascertain from previous occurrence the number of cases of the disease under consideration that may be expected to occur during a certain week in the absence of epidemics. It is based on reports to the Public Health Service during the past nine years. It is in most instances the median number of cases reported in the corresponding weeks of the preceeding years. When the reports include several epidemics or when for other reasons the median is unsatisfactory, the epidemic perioks are excluded and the estimated expectancy is the mean number of cases reported for the week during nonepidemic years.

If the reports have not been received for the full nine years, data are used for as many years as possible, but no year earlier than 1919 is included. In obtaining the estimated expectancy, the figures are smoothed when necessary to avoid abrupt deviation from the usual trend. For some of the diseases given in the table the available data were not sufficient to make it practicable to compute the estimated expectaney.

Division, State, and city	$\begin{aligned} & \text { Population } \\ & \text { July 1, } \\ & \text { estimated } \end{aligned}$	Chicken pox, cases ported	Diphtheria		Influenza		Measles, cases ported	Mumps, cases ported	Pneumonia, deaths reported
			Cases, estimated expectancy	Cases reported	Cases reported	Deaths reported			
NEW ENGLAND									
Maine: Portland	76,400	2	2	0	0	0	16	1	
New Hampshire:		0	0	0	0	0	0	0	
Manchester-----	84,000	0			0	0	0	0	

City reports for week ended November 17, 1928-Continued

Division, State, and city	Population July 1, 1928, estimated	Chicken pox, cases ported	Diphtheria		Influenza		Measles, cases ported	$\left\lvert\, \begin{gathered} \text { Mumps } \\ \text { cases } \\ \text { re- } \\ \text { ported } \end{gathered}\right.$	Pneumonia, deaths reported					
			Cases, estimated expectancy	Cases reported	Cases reported	Deaths reported								
NEW ENGLAND-contd.														
Vermont: Barre.	${ }^{1} 10,008$	0	0	0	0	0	0	4	0					
Massachusetts:		35												
Boston-............--	131,000	$\begin{array}{r}35 \\ 3 \\ \hline\end{array}$	48 5	15	0	2	101	0	7					
Springfield....-...-.--	145, 000	17	4	12	0	0	.. 34	4	0					
Worcester-.........-	193, 000	11	7	2	0	0	2	13	0					
Rhode Island: Pawtucket	71,000	2	1	1	0	0	2	1	0					
Proridence-.......--	275,000	0.	11	20	0	1	3	0	8					
Connecticut:	${ }^{2}$)													
	164,000	13	8	7	0	0	0	1	2					
New Haven. -----.-	182, 000	14	3	0	0	0	1	2	5					
midde atlantic														
New York:														
Buffalo-..------.---	5444,000	32	21	10		0	2	1	14					
New York---.-.-.------	${ }^{5}, 321,000$	+26	176 9	144	16	8		1 5						
Syracuse-...-...-----	185, 000	10	7	1		0	2	2	7					
New Jersey:														
Camden-...-...-.------	459,000	13 52	10	$\begin{array}{r}89 \\ \hline\end{array}$	0 3	1 2	1	0	3					
Trenton-.-.-.-.-.-----	134,000	1	5	2	0	1	0	0	0					
Pennsylvania:	2,008,000	106	82	46	0	6	9	5	46					
Pitisburgh.-	2337,000	60	38	19	0	1	6	5	27					
Reading...	114,000	13	4	1	0	0	20	0	2					
east norti central														
Ohio:														
Cincinnati..........	411,000	14	19	8	0	2	0	1	10					
Cleveland.	960,000	113	${ }^{63}$	19	3	2	29	0	7					
Columbus.-----..-	285, 000	22	16	8	0	0	0	0	5					
Indiana: ${ }^{\text {Toledo-.-. }}$ -	295, 000	115	16	1	1	1	2	0	5					
Indiana: Fort Wayne	99,900	3		5	0									
Indianapolis...-----	367,000	45	14	7	0	0	3	1	11					
South Bend.--------	81, 700	3	3	0	0	0	0	0	1					
Terre Haute...-...-	71,900	0	3	1	0	0	0	0.	0					
Illinois:														
Springfield-----------	3, 64,700	1	3	1	1	0	${ }^{3}$	0	$\stackrel{1}{1}$					
Michigan: Detroit	${ }^{3} 1,242,044$													
Flint.	-136,000	13	12	48 3	2	4	6	21	31					
Grand Rapids...--	156,000	8	5	3	0	1	0	1	1					
Wisconsin: Kenosha	52,700	10												
Milwaukee...	517,000	166	34	4	0	0	48	6						
Racine.-	69, 400	36	3	2	0	0	10	0	0					
Superior---	${ }^{1} 39,671$	1	0	1	0	0	0	0						
west north central														
Minnesota:														
Dulath..---.-.-.-	113,000	12	1	0	0	0	0	3						
Minneapolis...-.-.	434,000	171	34	10	0		20	16	16					
Des Moines	146,000	0	6	2	0		0	0						
Sioux City---.-.	78,000	16	3	0	0		0	22						
Waterloo.-.......	36,900		0	2	10			46						
${ }^{1}$ Estimated, July 1, 1925.			${ }^{2}$ No estimate made.				${ }^{2}$ Special census.							

City reports for week ended November 17, 1928-Continued

Division, State, and city	PopulationJuly 1,1928,estimated	Chicken pox, cases ported	Diphtheria		Influenza		Measles, cases reported		Pneumonia, death re-Dorte ported					
			Cases, estimated expectancy	Cases reported	Cases reported	Deaths reported								
West north central-continued														
Missouri:														
Kansas City..	375,000	16	13	7		1	6							
St. Joseph....	78, 400	2	3	0	0	0	1	0	3					
St. Louis	830,000	20	54	45	0	0	2	1						
North Dakota: Fargo.	${ }^{1}$ 28,403	11	0	0	0	0	0	0	0					
South Dakota:														
Aberdeen.-...	${ }^{1} 15,036$	9	0	1	0		0	0						
Nebraska: Lincoln...	62,000	4	2	0	0	0	1	0	0					
Topeka	56,500	21	3	1	0	0	2	0	0					
soutim atlantic														
Baltimore---	808,000	91	37	13	6	3	4	45	24					
Cumberland.-...	${ }^{13} 31,741$	1	0	0	0	0	7	0	,					
District of Columbla:---1														
Virginia:														
Lynchburg.	838,493 174,000	3 2	5 5	3 2	0	0	0	${ }_{0}^{12}$	2					
Pichmond.-	188, 000	2	20	18	0	0	0	0	${ }_{3}$					
Raleigh........-	${ }^{1} 30,371$	0	2	7	0	1	0	0	0					
Winston-Salem...	37,700 71,800	0 4	1	4	0	1	0	0	${ }^{2}$					
Charleston.	74, 100	0	2	2	29	0	0	0						
Columbia-	41.800	4	1	1	0	0	0	,	${ }^{6}$					
Brunswick	${ }^{1} 16,809$		0											
Savannah	94,900	0	3	8	1	0	0	0						
Florida:							0	0	0					
St. Petersburg.	${ }^{3} 1817,629$		0	1		0								
Tampa.-	102,000	0	3	1	0	0	0	0	0					
east south central														
Kentucky:														
Covington.				0			0		0					
Louisrille-..-----	311,000	2	9	2	2	0	3	0	0 10					
Tennessee: Memphis			11	1	0	0								
Nashville.-	137,000	0	- ${ }^{11}$	3	0	1	0		0					
Alabama:														
Birmingham...	211,000	3	3	4	11	0	0		2					
Mobile	66,800 47,000	0		$\stackrel{2}{8}$	2	- 2	0	0 1 0 0	1					

${ }^{1}$ Estimated July 1, 1925. $\quad 2$ No estimate made. ${ }^{2}$ Special census.

City reports for week ended November 17, 1928-Continued

City reports for week ended November 17, 1988-Continued

[^8]City reports for week ended November 17, 1928-Continued

City reports for week ended November 17, 1988-Continued

${ }^{1}$ Rables (in man): 1 case and 1 death at Fittsburgh, Pa., and 1 death at Houston, Tex.

City reports for week ended November 17, 1988-Continued

${ }^{1}$ Rabies (in man): 1 case and 1 death at Pittsburgh, Pa., and 1 death at Houston, Tex.
${ }^{2}$ Delayed reports.
${ }^{2}$ Typhus fever: 2 cases at Savannah, Ga.
The following table gives the rates per 100,000 population for 101 cities for the 5 -week period ended November 17, 1928, compared with those for a like period ended November 19, 1927. The popula-
tion figures used in computing the rates are approximate estimates as of July 1,1928 and 1927 , respectively, authoritative figures for many of the cities not being available. The 101 cities reporting cases had estimated aggregate populations of approximately $31,657,000$ in 1928 and $31,050,000$ in 1927 . The 95 cities reporting deaths had nearly $30,961,000$ estimated population in 1928 and nearly $30,370,000$ in 1927. The number of cities included in each group and the estimated aggregate populations are shown in a separate table below.

Summary of weelily reports from cities, October 14 to November 17, 1928-A nnual rates per 100,000 population compared with rates for the corresponding period of 1927 :

DIPHTHERIA CASE RATES

	Week ended-									
	$\begin{aligned} & \text { Oct. } \\ & 20, \\ & 1928 \end{aligned}$	Oct. 22, 1927	$\begin{aligned} & \text { Oct. } \\ & 27,8 \\ & 1928 \end{aligned}$	$\begin{aligned} & \text { Oct. } \\ & 29,7 \\ & 1927 \end{aligned}$	$\begin{gathered} \text { Nov. } \\ 3, \\ 1928 \end{gathered}$	$\begin{gathered} \text { Nov. } \\ 5_{9} \\ 1927 \end{gathered}$	$\begin{gathered} \text { Nov. } \\ 10 \% \\ 1928 . \end{gathered}$	$\begin{aligned} & \text { Nov. } \\ & \text { 12, } \end{aligned}$	$\begin{gathered} \text { Nov. } \\ 177 \\ 1928 \end{gathered}$	$\begin{gathered} \text { Nov. } \\ 19 . \\ 1927 \end{gathered}$
101 cities.	2125	170	131	195	140	213	${ }^{8} 153$	${ }^{4} 215$	${ }^{3} 158$	223
New England.	145	123	156	135	90	114.	122	160	159	163
Middle Atlantic.	84	142	98	190	110	225	109	204	134	233
East North Central.	${ }^{2} 133$	199	154	232	169	261	169	253	168	251
West North Central.	127	129	158	139	144	194	210	160	197	152
Soath Atlantic....	235	193	179	191	226	184	${ }^{3} 243$	189	- 199	216
East South Central	190	167	155	259	170	152	180	208	100	${ }^{238}$
West South Central.	196	285	172	294	220	318	272	${ }_{278}^{294}$	240	3243
Mountain.	62	152	${ }_{66}^{27}$	99 151	71 64	99 141	71 79	$\begin{array}{r}278 \\ 4 \\ \hline\end{array}$	239 7	2206
Pacific.	72	219	66				7		100	

MEASLES CASE RATES

101 cities	239	54	52	70	58	77	873	496	694	124
New England	179	186	244	191	338	242	402	342	382	391
Middle Atlantic	19	64	25	72	33	72	42	124	69	93
East North Central	$\bigcirc 24$	21	41	18	39	29	57	27	86	54
West North Central	76	22	49	34	68	14	43	16	62	22
South Atlantic.	32	45	63	106	46	132	${ }^{-} 56$	135	687	281
Eaist South Central	10	51	0	203	10	233	5	78	15	147
West South Central	0	37	8	21	8	21	8	12	12	70
Mountain.	71	72	124	63	80	9	177	18	203	72
Pacific.	41	50	43	91	15	78	43	- 76	754	212

SCARLET FEVER CASE RATES

101 cities	${ }^{2} 110$	117	114	145	125	148	${ }^{3} 164$	4150	${ }^{8} 169$	177
New England.	152	151	117	212	131	200	175	205	193	249
Middle Atlantic	69	73	57	97	69	110	95	110	108	152
East North Central	2137	127	151	166	172	173	233	177	245	201
West North Central	138	137	214	247	197	164	253	186	224	232
Sonth Atlantic.	114	161	107	168	116	159	${ }^{8} 143$	182	${ }^{6} 101$	155
East South Central	130	147	120	137	140	167	160	152	249	112
West South Central	72	79	76	124	136	149	176	103	196	103
Mountain	88	278	62	143	62	179	88	152	97	233
Pacific.	151	136	179	97	148	141	169	-117	7146	154

[^9]Summary of weekly reports from cities, October 14 to November 17, 1928-Annual rates per 100,000 population compared with rates for the corresponding period of 1927-Continued

SMALLPOX CASE RATES

TYPHOID FEVER CASE RATES

101 cities.	${ }^{2} 18$	20	18	17	13	19	39	415	${ }^{1} 10$	15
New England	7	16	16	19	7	16	9	16	16	23
Middle Atlantic.	23	15	18	12	11	20	7	15	10	14
East North Central.	27	16	10	13	5	7	5	9	6	7
West North Central	10	22	14	16	18	24	4	28	14	20
South Atlantic.	40	32	40	22	32	31	316	20	611	25
East South Central	30	30	50	46	35	35	30	5	10	15
West Scuth Central	8	29	24	37	20	58	40	33	20	29
Mountain.	53	81	27	27	18	36	27	9	18	18
Pacific.	13	16	13	16	5	5	3	47	75	13

INFLUENZA DEATH RATES

95 cities.	${ }^{2} 10$	9	10	8	10	9	${ }^{3} 13$	8	${ }^{5} 15$	9
New England.	2	5	5	0	2	5	5	2	9	5
Middle Atlantic.	7	7	8	4	5	8	12	9	9	7
East North Central.	27	5	5	5	10	9	9	5	10	2
West North Central	8	12	8	6	8	10	2	2	6	10
South Atlantic.	5	11	11	13	11	7	17	16	${ }^{6} 14$	20
East South Central	31	27	5	43	21	16	26	16	16	21
West South Central	21	13	12	17	25	25	37	17	33	34
Mountain.	62	18	44	27	18	18	27	18	53	36
Pacific.	27	14	54	10	27	7	41	0	769	3

PNEUMONIA DEATH RATES

95 cities.	${ }^{2} 102$	77	86	91	86	89	${ }^{8} 91$	104	${ }^{6} 102$	112
New England	126	86	74	65	90	63	80	95	57	102
Middle Atlantic	124	75	92	92	83	87	105	113	124	118
East North Central	287	66	79	82	79	93	77	89	82	96
West North Central	51	64	41	68	71	62	65	75	73	81
South Atlantic.	109	70	110	87	93	115	374	117	${ }^{6} 125$	157
East South Central	94	133	131	117	131	117	146	144	162	15
West South Central	74	85	82	187	119	89	90	127	70	140
Mountain.	62	143	124	143	97	117	97	143	115	90
Pacific.	98	100	98	97	88	100	125	100	${ }^{7} 102$	76

[^10]Number of cities included in summary of weekly reports, and aggregate population of cities of each group, approximated as of July 1, 1988 and 1957, respectively

Group of cities	Number of cities reporting cases	Number of cities reporting deaths	Aggregate population of cities reporting cases		Aggregate of cities deaths 1928	population reporting 1927
			1928	1927		
Total	101	95	31, 657,000	31,050, 300	30, 960, 700	30,369, 500
Now England.	12	12	2, 274,400	2,242,700	2, 254,400	2, 242, 700
Middle Atlantic.	10	10	10,732, 400	10.504 .700	10,732,400	10, 594, 700
Esst Nortle Central	16	16	7,991, 400	7, 820, 700	7, 991, 400	7, 820,700
West North Central	12	10	2,683, 500	2,634,500	2, 566,400	$2{ }^{2} 518,500$
South Atlantic.	21	21	2,981,900	2,890, 700	2, 381,900	2, 890, 700
Exast South Central	7	6	1, 4488300	1,028, 300	1,000, 100	980,700
West South Central	8	7	1,307, 000	1,260, 700	1,274, 100	1,227,800
Mountain.	9	9	2591, 100	-581, 600	1 591, 100	-581,600
Pacific.-	6	4	2,046, 400	1,996,400	1,548,900	1,512,100

FOREIGN AND INSULAR

CANADA

Quebec Province-Communicable diseases-Week ended November 17, 1928.-The Bureau of Health of the Province of Quebec reports cases of certain communicable diseases for the week"ended November 17,1928 , as follows:

Disease	Cases	Disease	Cases
Chicken pox.	131	Scarlet fever	148
Diphtheria.-----	70	Smallpox---	49
German measles	6		34
Influenza....-	16		14
Measles...-.-.--	20		21

CHINA

Inner Mongolia-Plague.-According to a report issued by the North Manchurian Plague Prevention Service, October 22, 1928, the plague epidemic in the Tungliao district has practically been stamped out. All localities, including Chien Chia Tien, report a clean bill of health, only an occasional case appearing in outlying districts.

The little village of Chien Chia Tien, with its 1,800 inhabitants, has borne the brunt of the attack and lost over one-fifth of its inhabitants. The second center was Chang Yu, while the cases in other cities were mostly among refugees from Chien Chia Tien.

The number of victims of the epidemic has been, roughly, as follows:

	Cases		Cases
Chien Chia Tien	340	Cheng Chiatun (railway junction)	2
Tungliao and adjoining Mongol settlements..	40	Pa Mien Cheng.	1
Ta Lin.	12	Other places.	20
San Lin	22		
Chang Yu (not on railway but consisting of 5 Mongol settlements)	50	Total...	487

Out of 15 post-mortems performed at Chien Chia Tien only 2 showed complications in the lungs. A second experiment with Pulex irritans was successful, the guinea pig dying 19 days after inoculation and showing signs of subacute plague.

During the epidemic strict isolation and rat and flea destruction by sulphur fumigation were practiced. The antiplague organization at Tungliao and Chien Chia Tien is to be maintained during the winter,
watching for any possible development and making preparations for the establishment of a permanent hospital and laboratory at Tungliao under the auspices of the Manchurian Plague Prevention Service early next year.

Manchuria-Communicable diseases, year 1927-28.-According to the annual report of the North Manchurian Plague Prevention Service, for the year ended September 30, 1928, the first cases of plague in the Tung Liao district occurred in August. During that month suspicious deaths were reported in the district, which had recently been opened up for cultivation mainly by the building of the Ssuping-kai-Cheng Chia Tien-Taonan (Ssu-Tao) and Ssupingkai-Cheng Chia Tien-Tungliao Railways, which branch off at Ssupingkai from the South Manchurian Trunk Line, and also the completion of the 250-mile track between Tungliao in the north and Tahusan in the south (on the Peking-Mukden Line). This easy access by rail has also introduced attendant dangers of plague from the endemic centers of Outer Mongolia.

On receipt of telegraphic inquiries regarding 20 suspicious deaths at Tungliao early in August, Dr. Wu Lien Teh, director and chief medical officer of the North Manchurian Plague Prevention Service, made a personal investigation. Local doctors had seen some patients complaining of fever, headache, unconsciousness, and sometimes diarrhea, and dying within two or three days after the first appearance of the symptoms.

During the first week of September a request for medical help came from the authoritios of the Ssu-Tao Railway, as some suspicious deaths had occurred at Chien Chia Tien, a village 23 miles east of the railway terminus at Tungliao. A medical officer visited the village, and the cases were bacteriologically confirmed as plague.

Precautions in the way of isolating the sick, quarantining the village, rat destruction, rigid control of passenger traffic from the affected district, and systematic vaccination of the inhabitants with antiplague vaccine were observed.

From Urga information was also received of an outbreak of human plague, and the Mongolian and Russian Medical Departments requested medical aid. Vaccine and serum were sent by railway and airplane.

There were no outbreaks of cholera in Manchuria during the year. Several outbreaks of influenza have been reported, as a rule of mild form. Smallpox continues to be endemic, but is rarely fatal among Chinese. Scarlet fever has not been epidemic for several years. There have been, however, an unusually large number of ceses of typhus fever, 100 cases being received at the hospital in Dairen: and numerous cases being reported during the spring along the route to

Harbin. Typhoid fever and dysentery were present, particularly the latter, which seems to be particularly virulent among Japanese residents.

DENMARK

Communicable diseases-September, 1928.-During the month of September, 1928, communicable diseases were reported in Denmark as follows:

Disease	Cases	Disease	Cases
Broncho-pneumoria	907	Paratyphoid fever.	10
Cerebrospinal moningitis	4	Pneumonia	195
Chicken pox --.-.--	19	Poliomyelitis.	25
Diphtheris and croup	393	Puerperal fever.	18
Erysipelas-----	2 201	Scarlet fever.-	203
Influenasa	2,366	Tetanus	3
Jaundice-------	108	Tubarculosis, pulmonary.	243
Lethargic encephalitis	4	Typhoid fever.-	14
Measles.	394	Undulant fever	29
Mumps...	292	Whooping eough	1,447

FEDERATED MALAY STATES

Vital statistics, 1927.-According to the annual report of the Medical Department of the Federated Malay States, the population of the States, estimated June 30, 1927, was $1,504,832$. The following table shows a comparison of the deaths, births, and infant mortality for the years 1926 and 1927:

Year	Deaths	Death rate per 1,000 popula- tion tion	Births	Birth rate per 1,000 popula- tion	Deaths under 1 year	Infant mortal- ity rate per 1,000 births
${ }_{1920 ~}^{1927}$	$\begin{aligned} & 48,323 \\ & 38,445 \end{aligned}$	$\begin{aligned} & 32.11 \\ & 29.22 \end{aligned}$	$\begin{aligned} & 48,013 \\ & 39,834 \end{aligned}$	$\begin{aligned} & 31.91 \\ & 30.28 \end{aligned}$	9, 752	$\begin{aligned} & 203.11 \\ & 193.75 \end{aligned}$

Of the total deaths there were 20,736 , or 42.91 per cent, attributed to fevers, most of them probably resulting from malaria. Dysentery and diarrhea accounted for 7.15 per cent of the total deaths, pulmonary tuberculosis for 4.16 per cent, pneumonia for 6.66 per cent, and convulsions for 11.08 per cent.

GREAT BRITAIN

Scotland-Vital statistics-July-September, 1928.-The Registrar General of Scotland has published statistics for the third quarter of 1928, which show that the birth rate for Scotland for that quarter was 19.1 per 1,000 population, the death rate 11.0 per 1,000 , and the death rate of infants under 1 year of age was 69 per 1,000 births.

The following items are taken from the quarterly returns of births, deaths, and marriages registered in Scotland during the quarter ended September 30, 1928:

Population, estimated.	888,700	Deaths from-Continued.	
Births.	23,441	Lethargic encephalitis.	23
Marriages	9,233	Malaria.	3
	13,457	Measies.	65
Deaths under 1 year.	1,610	Nephritis (acute).	47
Deaths from-		Nephritis (chronic)	355
Bronchitis.	503	Paratyphoid sever	2
Broncho-pneumonia...-.-.-.-.-.-.-. -	378	Pneumonia.	483
Cancer	1,682	Poliomyelitis	13
Cerebrospinal meningitis.............-	38	Puarperal septicemia.	40
Diabetes.-	111	Scarlet fover.	23
Diarrhes and enteritis (under 2		Syphilis.	24
years).-....--------.	235	Tetanus.	2
	72	Tuberculosis (pulmonary).	740
Dysentery-.-............................-.	2	Tuberculosis (all ather forms)..,....-	331
Heart disease.	1,814	Typhoid fever.	5
Influenza:		Whooping cough.	201
Sole cause.	19		
With other causes......	63		

With other causes.. 63
Lethargic encephalitisMalaria3Nephritis (acute)47Paratyphoid fever,
Pollomyelitis
Pollomyelitis 103 103Puarperal septicemia.40
Scarlet lover 23Tetanus2
Tuberculosis (pulmonary). 740
Typhoid Rever.201

JAMAICA

Communicable diseases-Six weeks ended November 10, 1928.-During the six weeks from September 30 to November 10, 1928, cases of certain communicable diseases were reported from Kingston, Jamaica, and from the Island of Jamaica outside of Kingston, as follows:

Disease	Kingston	Other localities	Disease	Kingston	Other localities
Cerebrospinal meningitis		5	Paratyphoid fever.	1	
Chicken pox	5	12	Puerperal fever.......-.-.		4
Diphtheria		1	Tuberculosis (pulmonary)....-	76	111
Dethargic encephalitic.-	1	38	Typhoid fever	43	140

NEW ZEALAND

Vital statistics-Comparative-Years ended March 31, 1928, and 1927.-According to the annual report of the director general of health of New Zealand, for the year ended March 31, 1928, the mean population of the Dominion was estimated as $1,374,439$. The following table shows the vital statistics for the years ended March 31, 1928 and 1927, respectively:

Year	Births	Birth rate per 1,000 population	Deaths	$\begin{aligned} & \text { Death rate } \\ & \text { per } 1,000 \\ & \text { population } \end{aligned}$	Infant mortality rate per 1,000 births	Marriages
1927---	$\begin{gathered} 27,881 \\ 28,473 \end{gathered}$	20.2921.05	11,61311,819	8.458.74	$\begin{aligned} & 38.74 \\ & 39.76 \end{aligned}$	$\begin{aligned} & 10,478 \\ & 10,680 \end{aligned}$
1928...-						

The most outstanding feature of the report is the extremely low infant mortality rate. The per cent of illegitimate births still continued high.

TUNISIA

Tunis- Vital statistics, 1827.-The following items are taken from a resume of the demographic and sanitary statistics of the municipality of Tunis which appeared in the Dépếche Tunisienne of October 4, 1928.
The population in 1926 was said to be 185,996 . Deaths from all causes were 4,853 in 1927, 4,447 in 1926, and 5,765 in 1925 . The death rates among the French population were 16.4 per 1,000 in 1927 and 14.5 in 1926. Among the Moslems the death rates were 34 per 1,000 in 1927, and 31 in 1926.
The deaths of children under 10 years of age were said to equal one-third of the births in the French and Italian population, and one-half of the births in the Arab and Jewish population.

Smallpox was responsible for 540 deaths in 1925 and only 10 deaths in 1927. Scarlet fever caused 103 deaths in 1927. Tuberculosis was said to cause one-seventh of the deaths in Tunisia and one-sixth of the deaths among the Moslems.
CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER
From medical officers of the Public Health Service, American consuls, health section of the League of Nations, and other sources. The reports contained in the following table
must not be considered as complete or final as regards either the list of countries included or the figures for the particular countries for which reports are given:
CHOLERA
[C indicates cases; D, deaths; P, present]

Place	δ	Mar.$11-$Apr.7, 1928	$\begin{gathered} \text { Apr. 8- } \\ \text { May } \\ 5,1928 \end{gathered}$	$\left\lvert\, \begin{gathered} \text { May 6- } \\ \text { June } \\ \text { 2, 1928 } \end{gathered}\right.$	$\begin{aligned} & \text { June } \\ & 3-30, \\ & 1928 \end{aligned}$	$\begin{aligned} & \text { July } \\ & 1-28, \\ & 1928 \end{aligned}$	$\begin{gathered} \text { July } \\ \text { 20-Aug. } \\ \text { 25, 1928 } \end{gathered}$	Week ended-									
								September, 1928					October, 1928				Nov. 3, 1928
								1	8	15	22	29	6	13	20	27	
Ceylon: Colombo................................... ${ }_{\text {d }}^{\text {C }}$						1											
China: \quad Canton... ${ }_{\text {D }}^{\text {D }}$																	
		2		1	2	8	2		1							1	
Kwantung-Dairen.- ${ }_{\text {D }}$										1						
Shanghai..	.-. ${ }^{\text {C }}$						3	1	1								.-
Swatow-7.-.-....-..... ${ }^{\text {C }}$				3	7				3			1	1	1		
						44, 240	52,788		9,032	7,617	6,168						
Bassein:	\ldots-... ${ }_{\text {D }}$	11, 877	20,432	20,162 40	20, 114	23, 216	26,967	5,046	4,895	4,272	3,518						
Bombay	$\cdots{ }_{\text {- }}^{\text {- }}$	3 3 3		1 1		${ }_{11}^{6}$	9 5 5	3 2	2	1	--	9 2	4	2			1
Calcutta. ${ }^{\text {C }}$	664	446	552	462	206	93	17	16	17	18	21	12	8			
	D	442	428	410	323	133	51	7	10	13	10	12	9	${ }^{6}$	12	25	35
Madras	$\cdots{ }_{\text {D }}^{\text {- }}$	10 4	22 18	27 16	29 21 8	72 31	555 271	65 34	49 33	25 15	10	57 27	25	12	17 9	31	32
Madras Presidency	\cdots	1,483		1,314	878												
Moulmein...		812		675 1	460												
											1						
		22	23		13		13		1	5 1	1	1					
		16	15			1	8			1	1		1		1		
		10 9	110				1				1				1		
						7	31										

CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER-Continued

CHOLERA-Continued C indicates cases; D, deaths; P, p

plague

Cholera, plague, smallpox, typhus fever, and yellow fever-Continued

Place	$\left.\begin{gathered} \text { Mar. } \\ 11-\mathrm{Apr} \\ 7,1928 \end{gathered} \right\rvert\,$	$\begin{gathered} \text { Apr. 8- } \\ \text { May } \\ 1928 \end{gathered}$	$\left\lvert\, \begin{gathered} \text { May 6- } \\ \text { June 2, } \\ \text { 1928 } \end{gathered}\right.$	$\begin{aligned} & \text { June } \\ & 3-30, \\ & 1928 \end{aligned}$	$\begin{gathered} \text { July } \\ \text { 1-28, } \\ 1928 \end{gathered}$	$\left.\begin{array}{\|c\|} \text { July 29- } \\ \text { Aug. } 25, \\ 1928 \end{array} \right\rvert\,$	Aug.26 Sept. 22, 1928	Week ended-								
								$\begin{gathered} \text { Sept. } \\ 29, \\ 1928 \end{gathered}$	October, 1928				November, 1928			
									6	13	20	27	3	10	17	24
Canary Islands:																
Lanzarote Village... ${ }_{\text {C }}^{\text {C }}$			1													
	4						2			1	1	.-.			
Palma Island.. ${ }^{\text {C }}$	-...-					7										
Teneriffe... ${ }_{\text {C }}^{\text {D }}$					3	5				2					
							3								
Ceylon: \qquad												4			
Colombo \qquad C D	7 5	1	4	2			3				2	1				--
											2				
Amoy			5		P 1											-
Hong Kong -.. ${ }_{\text {- }}^{\text {C }}$		2		1	1											
---....-																
							${ }^{220}$	57	53	70	13	11	6	2		-
Shansi- Fengchow \qquad C										\mathbf{P}						
Plague-infected rats JavaBatavia and West Java$\qquad$$\qquad$								4			1	2				
							49		10							
	80 80 3	47 47	65 95	61 4	32 32 2	46 4 2	49	12	10							

Cholera, plague, smallpox, TYPHUS FEVER, AND YELLOW FEVER-Continued

									s^{-3}	
	-mon									
	-10n	-						m		
-										
		-								
\%8										

ChOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER-Continued
[C indicates cases; D, deaths; P, present]

Steamship SVclly at Liverpool from Buenos Aires and Rosario, June 8, 1928, seven plague-infected rats. PLAGUE-Continued
SMALLPOX

CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER-Continued SMALLPOX-Continued
[C indicatas cases; D, deaths; P, present]

CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER—Continued
SMALLPOX-Continued

CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER-Continued
SMALLPOX-Continued

TYPHUS FEVER

Cholera, plague, smallpox, typhus fever, and yellow fever-Continued

Place	$\begin{gathered} \text { Mar. } \\ \text { 11- } \\ \text { Apr. } \end{gathered}$	$\begin{aligned} & \text { Apr. } \\ & \text { 8- } \\ & \text { May } \\ & \mathbf{5 , 1 9 2 8} \end{aligned}$	$\begin{aligned} & \text { May } \\ & \text { 6- } \\ & \text { June } \\ & 2,1928 \end{aligned}$	$\begin{aligned} & \text { June } \\ & 3-30, \\ & 1928 \end{aligned}$	$\begin{aligned} & \text { July } \\ & 1-28, \\ & 1928 \end{aligned}$	$\begin{gathered} \text { July } \\ 20 \\ \text { Aug. } \\ 25^{\prime}, 18 \% 8 \end{gathered}$	Week ended-																	
							September, 1928					October, 1928				November, 1928								
								8	15	22	29	6	13	20	27	3	10	17						
Egypt-Continued. Menonfieh Province																								
. Port Said.. ${ }^{\text {d }}$		3	3	2	2																			
			1		4	4				5	1	3												
Great Britain: London County- C C																								
Greece: Piræus... Hungary: Budapest. \square																								
Galway County-Oughterard.-.---...- \mathbf{C}																								
Kerry County- Cahirciveen................................... C																								
Miyagi				1							2													
Yamagata \qquad C			2	2	2																			
Latvia (see table below).																								
Lithuania (see table below). Mexico (see also table below):																								
Mexico City, including municipalities in Federal District	12	8	19	14	10	10	7	1	1	6	2	3	2	2	6	2	1	--.--						
Monterrey ...	3 1	1	2		3		1										1	...-						
Monterre Moroceo Palestine Peru (see table below).	748 7	591	280 4	214 8	153 9	44	$\stackrel{7}{2}$		3		4	${ }_{5}^{1}$		1		1		- 3						

CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER-Continued

[^0]: ${ }^{1}$ From the Office of Statistical Investigations, U. S. Public Health Service.
 ${ }^{2}$ The number of States reporting for the various diseases were as follows: Typhoid fever, 41; poliomyelitis, 43; meningococcus meningitis, 42; influenza, 31; smallpox, 42; measles, 38; diphtheria, 42; scarlet
 fever, 41.

[^1]: ${ }^{1}$ Data from the Monthly Epidemiological Report of the Health Section of the League of Nations' Secretariat, Sept. 15 and Oct. 15, 1928, supplemented by information published in the Public Health Reports.

[^2]: ${ }^{2}$ A report of the yellow fever epidemic at Rio de Janeiro was published in Public Health Reports for November 23, 1928, pp. 3079-3083.

[^3]: 1 Exclusive of New York City.
 2 Rate previously published was exclusive of infantile diarrhea.

[^4]: ${ }^{1}$ Exclusive of New York City.
 2 Not available.
 ${ }^{3}$ Rate previously published was for diarrhea of children under 5 years.

[^5]: 4 Reported as intestinal diseases of children under 1 year.
 s Reported as kidney diseases.
 ${ }^{6}$ Rate per 1,000 total births.
 ${ }^{7}$ Reported as puerperal septicemia.

[^6]: ${ }^{2}$ Exclusive of Kansas City, Mo.

[^7]: ${ }^{1}$ Exclusive of Oklahoms City and Tulsa.

[^8]: 1 Nonresident.

[^9]: ${ }^{1}$ The figures given in this table are rates per 100,000 population, annual basis, and not the number of cases reported. Populations used are estimated as of July 1, 1928, and 1927, respectively.
 ${ }^{2}$ South Bend, Ind., not included.
 Brunswick, Qa., not included.

 - Seattle, Wash., and Spokans, Wash., not included.
 © Frederick, Md., Roanoke, Va., Brunswick, Ga., and Tacoma, Wash., not included.
 © Frederick, Md., Roanoke, Va., and Brunswick, Ga., not included.
 7 Tecoma, Wash., not included.

[^10]: ${ }_{2}^{2}$ South Bend, Ind., not included.
 ${ }^{2}$ Brunswick, Ga., not included.

 - Seattle, Wash., and Spokane, Wash., not included.
 s Frederick, Md., Roanoke, Va., Brunswick, Ga., and Tacoma, Wash., not included.
 ${ }^{6}$ Frederick, Md., Roanoke, Va., and Brunswick, Ga., not included.
 ${ }^{7}$ Tacoma, Wash., not included.

